

Challenges in Defining A Safe Level: Lead Case Study

Barbara D. Beck, PhD, DABT, ATS, AAS Fellow

JIFSAN-CFS3 Virtual Advisory Council Symposium: Understanding of the Impact of Arsenic, Cadmium, and Lead Across the Food Supply May 25, 2022

Blood Lead Level (BLL) Targets for Children

- < 2012 CDC blood lead level (BLL) health-based level of concern (LOC) for children – 10 μg/dL CDC
- 2012 CDC concludes "no safe level" of lead; 97.5 percentile BLL of population = 5 μg/dL, blood lead reference value (BLRV); not health-based
- 2021 CDC BLRV 3.5 μg/dL

US EPA (2019) Residential Dust Lead Hazard Standards

- Risk management decisions for lead in house dust in homes with lead in paint
- Target population(s): US children and subpopulations, *e.g.*, based on existing dust lead levels
- Estimates BLL from dust ingestion in children at different surface lead loadings
 - Lead in dust + other contributors (e.g., food) → total BLL

US EPA (2019) Residential Dust Lead Hazard Standards (cont.)

- 2 exposure models to estimate BLL percentiles at different surface loadings
 - IEUBK (Integrated Exposure Uptake Biokinetic) model to relate uptake of lead loadings in surface dust, μg/ft², (converted to dust lead concentrations in mg/kg) to BLL
 - Empirical model, epidemiologically based, to correlate dust lead loadings with BLL
- Multiple comparisons of BLL percentiles to:
 - Potential association with IQ decrement
 - Comparison to various BLL metrics, *e.g.*, CDC BLRV (at the time) of 5 μg/dL
- Selected surface loading levels (10 μg/ft² for floors, 100 μg/ft² for window wells) based on potential association with decrement of 0.7 – 0.8 IQ points and on BLL distribution in population

US FDA Interim Reference Level (IRL) for Dietary Lead Exposure in Women of Childbearing Age (WOCBA) (Flannery *et al.,* 2020)

- Approach for WOCBA:
 - Protection of fetus
 - Target BLL = CDC 2012 BLRV of $5.0 \mu g/dL$
 - Dietary lead intake to achieve BLRV in WOCBA
 - 5 μ g/dL BLL/ (0.04 μ g/dL per μ g lead/d) = 125 μ g/d
 - Intraspecies uncertainty factor of 10, variability in uptake of lead
 - IRL = 12.5 μ g lead/d, associated with BLL of 0.5 μ g/dL, 10X < BLRV of 5 μ g/dL
- Conceptually similar analysis conducted for children, IRL 3 μg lead/d, associated with BLL of 0.5 μg/dL
- Concluded IRLs protective of other endpoints in
 WOCBA and children, *e.g.*, blood pressure

US EPA Regional Screening Level (RSL) for Lead in Soil (US EPA 2021)

- Target population: children at residential sites with contaminated soil, *e.g.*, mining towns
- Estimates BLL from ingestion of lead in soil, including background sources
 - Lead in soil + other contributors (e.g., food) → total BLL
 - Uses IEUBK w/site-specific parameters, esp. for soil pathway, e.g.,
 - Soil lead concentrations
 - Bioavailability of lead in soil *versus* default bioavailability
 - Other parameters, *e.g.*, food, often national databases

US EPA Regional Screening Level (RSL) for Lead in Soil (US EPA 2021) (cont.)

- BLL results
 - Mean BLL
 - 95th percentile BLL population based on BLL GSD (measure of distribution of BLL)
- Use BLL predictions for potential risk management activities, *e.g.*, revegetation, soil removal
 - ≤ 5 % probability for individual child or population of children exceeding 10 µg/dL (LOC) ~ 400 mg lead/kg soil
 - Still recommended as screening soil lead level
 - Implications of 2021 BLRV of 3.5 μg/dL for 95th percentile?
 - Not health based
 - Potential to result in unrealistically low soil lead limit

Conclusions

- Some challenges with predicting and using BLLs
 - BLL predictions
 - Differences in pharmacokinetic assumptions
 - Varying feasibility of comparison to empirical data
 - Approaches different degrees of complexity
 - Lead in soil simpler, incorporation of site-specific information
 - Lead in housedust detailed characterization of uncertainty and variability
- What BLL targets to use?
 - A moving target!
 - Use of BLRV straightforward, but not health-based

Conclusions (cont.)

- Consideration of new information and approaches, e.g.,
 - ↓ in lead exposure from multiple sources over time (mostly, except for subpopulations)
 - Probabilistic approaches (stochastic human exposure and dose simulation (SHEDS) model)
 - Intermittent exposures
 - US EPA All Ages Lead Model (draft)
 - Other endpoints of interest, *e.g.*, cardiovascular in adults (addressed explicitly in US FDA IRL)
- Note: other programs using different approaches, e.g.,
 - US EPA drinking water action level for lead & SHEDS model
 - US EPA National Ambient Air Quality Standard (NAAQS) for lead in air
 - Cal OSHA and Leggett⁺ model for worker exposure
 - Cal OEHHA Prop65 and maximum allowable dose level (MADL) for repro./dev. toxicity

GRADIENT